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The primary objective of this research project is to test the

hypothesis that corticosteroids contribute to the adverse skeletal effects

of space flight. To achieve this objective, serum corticosteroids, which are

known to increase during space flight, must be maintained at normal

physiologic levels in flight rats by a combination of adrenalectomy and

corticosteroid supplementation via implanted hormone pellets. Bone

analyses in these animals will then be compared to those of intact flight

rats that, based on past experience, will undergo corticosteroid excess and

bone loss during space flight. The results will reveal whether

maintaining serum corticosteroids at physiologic levels in flight rats

affects the skeletal abnormalities that normally develop during space

flight. A positive response to this question would indicate that the bone

loss and decreased bone formation associated with space flight are

mediated, at least in part, by corticosteroid excess.

BACKGROUND

Space flight is known to induce alterations in calcium homeostasis.

Gemini, Apollo, and Skylab astronauts exhibited hypercalciuria and

negative calcium balances (1-3). Since the skeleton is the major reservoir

of calcium in the body, increases in the urinary excretion of calcium

presumably reflect bone loss. Photon absorptiometry revealed that the

bone mineral density of the calcaneus declined by approximately 4% in

Skylab crewmembers after 84 days of orbital flight (4). More recently,

bone ultrasound and quantitative computed tomography detected losses

of from 4 to 13% of primarily cancellous bone in the calcaneus and tibia

of a cosmonaut stationed on MIR for 6 months (5). Although it is

commonly assumed that the observed bone loss is due primarily to

increased bone resorption, recent biochemical data indicate that

decreased bone formation may also be involved (5).

Bone histomorphometric analyses are necessary to define more

completely the skeletal effects of space flight. Unfortunately, such

analyses are not feasible in astronauts due to the traumatic nature of the

bone biopsy procedure. For this reason, bone histologic studies in

experimental animals subjected to space flight are of considerable

interest. Rats placed in orbit aboard Soviet Cosmos biosatellites and the

space shuttle exhibited an inhibition of periosteal bone formation (6-8)

and loss of cancellous bone in the long bone metaphysis (9-12). Calcium

kinetic analyses (13) and measurements of the number of osteoclasts (9-



12), the bone resorbing cells, indicate that bone resorption was not
increased in rats during space flight. On the other hand, the number of
osteoblasts, the bone forming cells, was found to be decreased in rats
subjected to space flight (9-12). Therefore, the observed loss of
cancellous bone in flight rats appears to be due primarily to an inhibition
of bone formation rather than a stimulation of bone resorption.

It is commonly assumed that the adverse skeletal effects of space
flight are due to loss of mechanical loading in a weightless environment.
Nevertheless, some lines of evidence suggest that other factors may be
involved. If the bone changes induced by space flight are due solely to
mechanical unloading, these changes should be confined to weightbearing
bones. However, skeletal abnormalities have been detected in bones of
flight rats that lack a weightbearing function such as the maxilla,
mandible, and calvarium (14-16). These findings may be interpreted as
evidence that the skeletal effects of space flight are systemic rather than
confined to weightbearing bones. The failure of on-board centrifugation
to prevent the inhibition of periosteal bone formation in flight rats (17)
also indicates that microgravity is not solely responsible for bone loss
during space flight.

Endocrine factors in general and corticosteroids in particular may
be involved in the etiology of the apparently systemic skeletal effects of
space flight. In support of this concept, plasma cortisol was found to be
significantly increased in Skylab astronauts for the duration of their long-
term missions (1). Several investigators have reported that adrenal
hypertrophy occurred in rats placed in orbit aboard Cosmos biosatellites
(2,3). Exogenous administration of corticosteroids induces marked
hypercalciuria (18) and skeletal alterations that are similar to those
observed during space flight, including cancellous bone loss (19-21),
decreased numbers of osteoblasts (22-24), and an inhibition of periosteal
bone formation (24,25).

In summary, the above findings suggest that the changes in calcium
homeostasis and bone associated with space flight may be mediated, at
least in part, through the action of corticosteroids. This hypothesis has
not been adequately tested to date. The current research project is
designed to manipulate serum corticosteroids by a combination of
adrenalectomy and exogenous supplementation with implanted hormone
pellets. Maintenance of equivalent physiologic levels of serum
corticosteroids in flight and ground-based rats with subsequent bone
analyses will determine whether corticosteroid excess is essential for the
development of skeletal abnormalities during space flight.



ME-HTIODS

The experimental animals were male Sprague Dawley rats that
were 6 weeks of age and weighed an average of 165g at launch. All rats
were anesthetized with an IM injection of ketamine hydrochloride (50
mg/kg body weight) and xylazine (10 mg/kg body weight) and subjected
to bilateral adrenalectomy or sham surgery at 4 days prior to launch. At
the time of surgery, pellets composed of cholesterol with dissolved
corticosterone and aldosterone were implanted in each adrenalectomized
(ADX) rat. The proper doses of the hormones to achieve normal
circulating levels of corticosterone and aldosterone were established in
prior supporting ground-based studies. Each sham-operated rat was
implanted with a placebo cholesterol pellet. On the day before launch, all
rats were injected SC with calcein at a dose of 15 mg/kg body weight to
label bone forming surfaces. Shortly afterwards, six ADX flight rats and
six sham flight rats were loaded in each of two animal enclosure modules
(AEM) and transported to the space shuttle Columbia for launch on
6/20/96 (STS-78). On the day of launch, baseline ADX and sham rats
were sacrificed for collection of serum and bone samples. Other ADX and
sham rats were placed in ground-based AEMs or standard vivarium
(VIV) cages. The experiment therefore consisted of the following 8
groups of rats (N=6/group):

1. Baseline ADX
2. Baseline Sham
3. Flight ADX
4. Flight Sham

5. AEM ADX
6. AEM Sham
7. VlV ADX
8. VlV Sham

After a 17 day space flight, the ADX and sham flight rats were
necropsied between 4 and 6 hours after landing. Serum samples were
collected and stored at -80°C until their corticosterone and aldosterone
concentrations were measured by radioimmunoassay techniques. The
adrenal glands in sham rats were carefully dissected free of adjacent
tissues and weighed with a Mettler balance. Various bones including
both tibiae, femora, lumbar vertebrae, and caudal vertebrae were
stripped of musculature. The left tibia was frozen for subsequent
measurements of bone dry and ash weights. Other bones were placed in
10% phosphate-buffered formalin for 24 hours for tissue fixation. The
bone samples were then dehydrated in increasing concentrations of
ethanol and embedded undecalcified in methyl methacrylate. For
cancellous bone analyses, longitudinal sections were cut at a thickness of
4 _tm with an AO Autocut/Jung 1150 microtome. These sections were
stained according to the Von Kossa method with a tetrachrome



counterstain for measurements of cancellous bone volume (%), osteoclast
surface (%), an index of cancellous bone resorption, and osteoblast surface
(%), an index of cancellous bone formation. All data were collected in
cancellous bone tissue at distances greater than 1 mm from the growth
plate-metaphyseal junction to exclude the primary spongiosa.

The distal half of the right tibia was dehydrated in ethanol and

acetone, then embedded undecalcified in a styrene monomer that

polymerizes into a polyester resin (Tap Plastics, San Jose, CA). The tibial

diaphysis 1-2 mm proximal to the tibiofibular junction was then sawed

into 50-75 _tm thick cross sections with a Buhler Isomet low speed saw.

Cortical bone area, cortical width, and marrow area were measured in

these cross sections. Other measurements include the area of newly

formed bone between the calcein label and the periosteal surface as well

as the distance between the calcein label and the periosteal surface at

100 l_m intervals around the periphery of cortical bone. This distance

was divided by the time interval between administration of the calcein

label and landing (18 days) to calculate periosteal mineral apposition

rate. Similarly, the area of newly formed cortical bone along the

periosteal surface was divided by the same time interval to calculate the

periosteal bone formation rate.

All histomorphometric measurements were performed with the

Bioquant Bone Morphometry System (R&M Biometrics Corp., Nashville,

TN). Data are expressed as the mean for each group + SD. Statistical

differences among groups were evaluated by ANOVA followed by Fisher's

Protected Least Significant Difference (PLSD) test for multiple

comparisons. P values less than 0.05 were considered to be significant.

RESULTS

All rats gained substantial body weight during the course of the

experiment (Figure 1). The ADX and sham flight rats exhibited at least as

much weight gain as the ground-based AEM and VIV rats. In fact, the

mean body weight of the ADX flight group was slightly but significantly

increased compared to the mean body weight of all other groups. These

findings indicate that space flight was well tolerated by the flight rats.

Mean values for adrenal gland weights for the 4 sham groups are

shown in Figure 2. The sham flight group had significantly increased

adrenal gland weights compared to baseline and ground-based AEM and
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VIV sham groups. This finding is consistent with adrenal hypertrophy

and corticosteroid excess in sham flight rats.

Figures 3 and 4 depict mean values for serum corticosterone and

aldosterone, respectively. Sham flight rats exhibited a significantly

higher mean value for serum corticosterone by at least a factor of 2

compared to all other groups. This finding undoubtedly reflects a stress

response to re-entry and postflight handling in these animals. The

ground-based AEM and VIV sham groups also exhibited at least a strong

trend for increased serum corticosterone compared to all 3 ADX groups.

In contrast, the mean value for serum corticosterone remained at 50-60

ng/ml in all ADX groups, which is equivalent to normal physiologic levels

of the hormone in rats. Similarly, mean serum aldosterone (Figure 4) was

maintained at the normal physiologic level of approximately 100 pg/ml

in the 3 ADX groups. Therefore, the implanted hormone pellets were

found to successfully deliver normal levels of corticosterone and

aldosterone to the systemic circulation of ADX rats.

The dry and ash weights of the left tibia (data not shown) were

significantly greater in the flight, AEM, and VIV groups than the baseline

groups due to growth of the former groups during the experimental

period. However, no significant differences in tibial dry and ash weights

were detected among the flight groups (ADX and sham) and the ground-

based AEM and VIV groups (ADX and sham).

Data for cancellous bone volume in the proximal tibial metaphysis

are shown in Figure 5. The mean values were nearly the same for all 8

groups of rats with no significant differences among them. ADX and

sham flight rats also did not exhibit even a trend for decreased cancellous

bone volume in the lumbar vertebra, caudal vertebra, and femoral neck

(data not shown). Similarly, osteoclast surface (Figure 6), an index of

bone resorption, and osteoblast surface (Figure 7), an index of bone

formation, varied little in the proximal tibial metaphysis of all groups.
These cellular variables also did not differ in the lumbar and caudal

vertebrae of flight rats (ADX and sham) compared to the ground-based

AEM and VIV rats (data not shown).

Structural data for cortical bone in the tibial diaphysis are shown in

Figures 8-10. A growth-related increase in cortical bone area and width

was detected in the older flight, AEM, and VIV groups compared to the

younger baseline groups. However, when comparing rats of the same

age, these variables did not differ in the flight groups (ADX and sham)



compared to the AEM and VIV groups. Marrow area was nearly the
same in all 8 groups of rats.

Age-related decreases in periosteal bone formation rate (Figure 11)
and periosteal mineral apposition rate (Figure 12) occurred in the flight,
AEM, and VIV groups compared to the baseline groups. However, the
mean values for these variables were very similar in the flight groups
(ADX and sham) compared to the ground-based AEM and VIV groups.

CONCLUSIONS

All preflight procedures were accomplished as planned. The rats
were successfully adrenalectomized (ADX) and the implanted hormone
pellets delivered physiologic levels of corticosterone and aldosterone to
the systemic circulation. The substantial increase in body weight that
occurred in all rats indicated that the ADX/supplemented rats were
healthy and that the flight rats tolerated space flight well. The observed
adrenal hypertrophy in the intact sham flight rats was also a positive
finding in that it was suggestive of corticosteroid excess in these animals.

Unfortunately, the experimental objective, which was to test the
hypothesis that corticosteroids contribute to bone loss during space flight,
could not be achieved due to lack of bone changes in intact flight rats.
These animals exhibited normal cancellous bone mass at several different
skeletal sites. Furthermore, both cancellous and cortical bone formation
were found to be normal in flight rats compared to ground-based control
rats. The results clearly indicate that space flight has minimal effects on
bone mass and bone formation in rapidly growing rats. This finding is
surprising in view of previous reports of cancellous bone loss (9-12) and
an inhibition of bone formation (6-12) in rats subjected to space flight.
However, it is important to note that the rats from most of these previous
studies were older than the rats from the current study. In addition, the
former rats were often housed singly while in space compared to the
group housing for the animals of our experiment. Finally, the strain of
the rats also varied among the different flight experiments. Therefore,
the negative findings of the current study emphasize the importance of
rat age, strain, and housing conditions for the development of bone
changes during space flight. These factors are crucially important for the
planning of future experiments involving use of rats as an animal model
for the adverse skeletal effects of space flight.
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NON-TECHNICAL SUMMARY

Corticosteroid hormones that are secreted by the adrenal glands in

response to stressful situations are known to be increased during space

flight. These hormones are also known to have adverse effects on bone.

Therefore, the experiment was designed to determine whether excess

secretion of corticosteroid hormones by the adrenal glands contributes to

the bone loss associated with space flight. A certain group of flight rats

had their adrenal glands removed surgically, but were then

supplemented with normal levels of corticosteroids by implanted

hormone pellets. Another group of flight rats with intact adrenal glands

would presumably experience corticosteroid excess. A comparison of

bone between these groups would reveal whether maintaining

corticosteroids at normal levels in flight rats affects the bone changes

that occur during space flight. Although the planned hormonal

manipulations were successful, the experimental objective could not be

achieved due to lack of the expected bone changes in flight rats with

intact adrenal glands. These animals had normal amounts of bone mass

and normal levels of bone formation compared to ground-based control

rats. Therefore, space flight was found to have minimal effects on bone

mass and bone formation in rapidly growing rats. This negative result

may be a consequence of rapid bone growth in young rats, strain of rat,

and/or group housing conditions during space flight. Therefore, the

findings emphasize the importance of rat age, strain, and housing for the

planning of future space flight experiments.



300

A

V

200

>-
1oo

0
El

BSL

ADX

BSL
SHAM

a
a

FLIGHT FLIGHT AEM

ADX SHAM ADX

a

AEM

SHAM

a

VIV
ADX

VIV
SHAM

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 1



E

I-,-
-I-

ILl

,,.!
,¢
Z
14,1
n"

,¢

45

30

15

o
BSL FLIGHT AEM VlV

SHAM SHAM SHAM SHAM

* Significantly different from FLIGHT SHAM group (p < 0.05)

FIGURE 2



600'

O

0 200

rff' 100
UJ
¢/)

FLIGHT

ADX

a

FLIGHT

SHAM

abc

b

AEM AEM
ADX SHAM

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

bd

VlV
ADX

bc

vIv

SHAM

FIGURE 3



600

Iii 5OO
Z
O
n-
LLI 400
I--

_; 200

n"
ILl 100

FLIGHT
ADX

a

FLIGHT
SHAM

b

ac

AEM AEM
ADX SHAM

b

VlV
ADX

ace

VIV
SHAM

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 4



BSL

ADX

BSL FLIGHT FLIGHT AEM

SHAM ADX SHAM ADX

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 5

AEM

SHAM

VIV

ADX

VIV

SHAM



UJ

,¢
IJ.
n-

or)
!--
03
<_
,-I

O
I.U
p.,
03
O

8i

6

BSL

ADX

BSL

SHAM

FLIGHT FLIGHT AEM

ADX SHAM ADX

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 6

AEM

SHAM

VlV
ADX

VIV

SHAM



3O

BSL
ADX

BSL FLIGHT FLIGHT AEM
SHAM ADX SHAM ADX

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 7

AEM
SHAM

VIV
ADX

vIv
SHAM



n."

UJ
Z 2
O
rn
..I

L) 1
I-
n-
O
¢.)

0
BSL
ADX

BSL
SHAM

FLIGHT FLIGHT AEM
ADX SHAM ADX

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 8

AEM
SHAM

VIV
ADX

VIV
SHAM



1.5

A

04
E
E

,,<,
n-

O 0.5
n-
g:
<:

BSL

ADX

BSL FLIGHT FLIGHT AEM
SHAM ADX SHAM ADX

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 9

AEM

SHAM

VIV
ADX

VIV

SHAM



BSL
ADX

BSL
SHAM

FLIGHT FLIGHT AEM
ADX SHAM ADX

AEM
SHAM

a

VIV VIV
ADX SHAM

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 10



D,U,,
I.U
Z
O
rn

0.091

0.06

0.03

0
BSL

ADX

BSL FLIGHT FLIGHT AEM

SHAM ADX SHAM ADX

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 11

AEM

SHAM

VIV

ADX

VIV

SHAM



UJ

n-

n-
IJJ
Z
m

11

10

9

8

7

BSL
ADX

BSL FLIGHT FLIGHT AEM
SHAM ADX SHAM ADX

a: vs Flight ADX (p < 0.05)

b: vs Flight Sham (p < 0.05)

c: vs AEM ADX (p < 0.05)

d: vs AEM Sham (p < 0.05)

e: vs VIV ADX (p < 0.05)

FIGURE 12

C

AEM

SHAM

VIV

ADX

VIV

SHAM


